Skip to main content

Advertisement

Log in

The biomaterial-mediated healing of critical size bone defects in the ovariectomized rat

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study demonstrated an impaired biomaterial-mediated bone regeneration in a critical sized calvarial defect established within an ovariectomized rat model. Histological and microtomographic evidences were supported by an impaired osteoblastic gene expression and altered expression of estrogen receptors and adipogenic markers.

Introduction

This work aims to address the bone regeneration process in the ovariectomized rat model, by assessing a calvarial critical size defect implanted with a biocompatible bovine bone mineral graft.

Methods

Animals were randomly divided into two groups: Ovx (bilateral ovariectomy) and Sham (control surgery). Following 8 weeks, all animals were submitted to a surgical bicortical craniotomy (5-mm circular critical size defect), which was filled with a biocompatible mineral graft. Animals were euthanized at 1, 3, and 6 months following graft implantation (n = 10), and results on the orthotopic bone regeneration process were blindly evaluated by radiographic, microtomographic, histological, histomorphometric, and gene expression techniques.

Results

In the attained model, in both Sham and Ovx groups, the bone regenerative process was found to occur in a slow-paced manner. Likewise, a qualitative evaluation of the microtomographic and histological analysis, as well as quantitative data from histomorphometric indexes, revealed reduced bone regeneration in Ovx animals, at the assayed time points. Significant differences were attained at the 3 and 6 months. Gene expression analysis revealed a reduced expression of osteoblastic-related genes and an altered expression of estrogen receptors and adipogenic markers, within the regenerating bone of Ovx animals.

Conclusions

Due to the similarities between the osteoporotic animal model and the human condition of postmenopausal osteoporosis, it might be relevant to consider the potential clinical implication of the osteoporotic condition in the biomaterial-mediated bone tissue healing/regeneration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mikosch P (2012) Osteoporosis: pathophysiology and clinical aspects. In: Pietschmann P (ed) Principles of osteoimmunology. Springer, Vienna, pp 137–167

    Chapter  Google Scholar 

  2. NIH Consensus Development Panel on Osteoporosis Prevention (2001) Osteoporosis prevention, diagnosis, and therapy. J Am Med Assoc 285:785–795

    Article  Google Scholar 

  3. Poole K, Treece G, Ridgway G, Mayhew P, Borggrefe J, Gee A (2011) Targeted regeneration of bone in the osteoporotic human femur. PLoS One 14:e16190

    Article  Google Scholar 

  4. Leppänen O, Sievänen H, Jokihaara J, Pajamäki I, Kannus P, Järvinen T (2008) Pathogenesis of age-related osteoporosis: impaired mechano-responsiveness of bone is not the culprit. PLoS One 2:e2540

    Article  Google Scholar 

  5. Khosla S, Westendorf JJ, Oursler MJ (2008) Building bone to reverse osteoporosis and repair fractures. J Clin Invest 118:421–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dominguez L, Scalisi R, Barbagallo M (2010) Therapeutic options in osteoporosis. Acta Biomed 81(Suppl 1):55–65

    PubMed  Google Scholar 

  7. Fini M, Nicoli Aldini N, Gandolfi MG et al (1997) Biomaterials for orthopedic surgery in osteoporotic bone: a comparative study in osteopenic rats. Int J Artif Organs 20:291–297

    CAS  PubMed  Google Scholar 

  8. Hayashi K, Uenoyama K, Matsuguchi N, Nakagawa S, Sugioka Y (1989) The affinity of bone to hydroxyapatite and alumina in experimentally induced osteoporosis. J Arthroplasty 4:257–262

    Article  CAS  PubMed  Google Scholar 

  9. Teofilo JM, Brentegani LG, Lamano-Carvalho TL (2004) Bone healing in osteoporotic female rats following intra-alveolar grafting of bioactive glass. Arch Oral Biol 49:755–762

    Article  CAS  PubMed  Google Scholar 

  10. Fini M, Giavaresi G, Aldini N et al (2000) The effect of osteopenia on the osteointegration of different biomaterials: histomorphometric study in rats. J Mater Sci Mater Med 11:579–585

    Article  CAS  PubMed  Google Scholar 

  11. Okazaki A, Koshino T, Saito T, Takagi T (2000) Osseous tissue reaction around hydroxyapatite block implanted into proximal metaphysis of tibia of rat with collagen-induced arthritis. Biomaterials 21:483–487

    Article  CAS  PubMed  Google Scholar 

  12. Tami A, Leitner M, Baucke M, Mueller T, van Lenthe G, Müller R, Ito K (2009) Hydroxyapatite particles maintain peri-implant bone mantle during osseointegration in osteoporotic bone. Bone 45:1117–1124

    Article  CAS  PubMed  Google Scholar 

  13. Thomsen J, Laib A, Koller B, Prohaska S, Mosekilde L, Gowin W (2005) Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies. J Microsc 218:171–179

    Article  CAS  PubMed  Google Scholar 

  14. Komlev V, Mastrogiacomo M, Pereira R, Peyrin F, Rustichelli F, Cancedda R (2010) Biodegradation of porous calcium phosphate scaffolds in an ectopic bone formation model studied by X-ray computed microtomograph. Eur Cell Mater 19:136–146

    CAS  PubMed  Google Scholar 

  15. Luvizuto E, Tangl S, Zanoni G, Okamoto T, Sonoda C, Gruber R, Okamoto R (2011) The effect of BMP-2 on the osteoconductive properties of β-tricalcium phosphate in rat calvaria defects. Biomaterials 32:3855–3861

    Article  CAS  PubMed  Google Scholar 

  16. Hollinger JO, Kleinschmidt JC (1990) The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1:60–68

    Article  CAS  PubMed  Google Scholar 

  17. Gomes P, Fernandes M (2011) Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim 45:14–24

    Article  CAS  PubMed  Google Scholar 

  18. Surve V, Andersson N, Lehto-Axtelius D, Håkanson R (2001) Comparison of osteopenia after gastrectomy, ovariectomy and prednisolone treatment in the young female rat. Acta Orthop Scand 72:525–532

    Article  CAS  PubMed  Google Scholar 

  19. Hara T, Sato T, Oka M, Mori S, Shirai H (2001) Effects of ovariectomy and/or dietary calcium deficiency on bone dynamics in the rat hard palate, mandible and proximal tibia. Arch Oral Biol 46:443–451

    Article  CAS  PubMed  Google Scholar 

  20. Rawlinson S, Boyde A, Davis G, Howell P, Hughes F, Kingsmill V (2008) Ovariectomy vs. hypofunction: their effects on rat mandibular bone. J Dent Res 88:615–620

    Article  Google Scholar 

  21. Egermann M, Goldhahn J, Schneider E (2005) Animal models for fracture treatment in osteoporosis. Osteoporos Int 16:S129–S138

    Article  PubMed  Google Scholar 

  22. Asarian L, Geary N (2002) Cyclic estradiol treatment normalizes body weight and restores physiological patterns of spontaneous feeding and sexual receptivity in ovariectomized rats. Horm Behav 42:461–471

    Article  CAS  PubMed  Google Scholar 

  23. Brown L, Clegg D (2010) Central effects of estradiol in the regulation of food intake, body weight, and adiposity. J Steroid Biochem Mol Biol 122:65–73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Turner RT, Maran A, Lotinun S, Hefferan T, Evans GL, Zhang M, Sibonga JD (2001) Animal models for osteoporosis. Rev Endocr Metab Disord 2:117–127

    Article  CAS  PubMed  Google Scholar 

  25. Lelovas P, Xanthos T, Thoma S, Lyritis G, Dontas I (2008) The laboratory rat as an animal model for osteoporosis research. Comp Med 58:424–430

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Durão S, Gomes P, Silva-Marques J, Fonseca H, Carvalho J, Duarte J, Fernandes M (2012) Bone regeneration in osteoporotic conditions: healing of subcritical-size calvarial defects in the ovariectomized rat. Int J Oral Maxillofac Implants 27:1400–1408

    PubMed  Google Scholar 

  27. Bosch C, Melsen B, Vargervik K (1998) Importance of the critical-size bone defect in testing bone-regenerating materials. J Craniofac Surg 9:310–316

    Article  CAS  PubMed  Google Scholar 

  28. Hayashi K, Uenoyama K, Mashima T, Sugioka Y (1994) Remodelling of bone around hydroxyapatite and titanium in experimental osteoporosis. Biomaterials 15:11–16

    Article  CAS  PubMed  Google Scholar 

  29. Fuegl A, Tangl S, Keibl C, Watzek G, Redl H, Gruber R (2011) The impact of ovariectomy and hyperglycemia on graft consolidation in rat calvaria. Clin Oral Implants Res 22:524–529

    Article  PubMed  Google Scholar 

  30. Iwashita Y, Yamamuro T, Kasai R, Kitsugi T, Nakamura T, Okumura H, Kokubo T (1992) Osteoconduction of bioceramics in normal and osteopenic rats: comparison between bioactive and bioinert ceramics. J Appl Biomater 3:259–268

    Article  CAS  PubMed  Google Scholar 

  31. Ribeiro D, Figueira L, Issa J, Vecina C, Dias F, Cunha M (2012) Study of the osteoconductive capacity of hydroxyapatite implanted into the femur of ovariectomized rats. Microsc Res Tech 75:133–137

    Article  CAS  Google Scholar 

  32. Rodríguez JP, Garat S, Gajardo H, Pino AM, Seitz G (1999) Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics. J Cell Biochem 75:414–423

    Article  PubMed  Google Scholar 

  33. Carbonare LD, Valenti MT, Zanatta M, Donatelli L, Lo Cascio V (2009) Circulating mesenchymal stem cells with abnormal osteogenic differentiation in patients with osteoporosis. Arthritis Rheum 60:3356–3365

    Article  Google Scholar 

  34. Benisch P, Schilling T, Klein-Hitpass L et al (2012) The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One 7:e45142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zaman G, Jessop HL, Muzylak M, De Souza RL, Pitsillides AA, Price JS, Lanyon LL (2006) Osteocytes use estrogen receptor α to respond to strain but their ERα content is regulated by estrogen. J Bone Miner Res 21:1297–1306

    Article  CAS  PubMed  Google Scholar 

  36. He Y-X, Zhang G, Pan X-H, Liu Z, Zheng L-Z, Chan C-W, Lee K-M, Cao Y-P, Li G, Wei L (2011) Impaired bone healing pattern in mice with ovariectomy-induced osteoporosis: a drill-hole defect model. Bone 48:1388–1400

    Article  PubMed  Google Scholar 

  37. Chagin A, Lindberg MK, Andersson N, Moverare S, Gustafsson JÅ, Sävendahl L, Ohlsson C (2004) Estrogen receptor-β inhibits skeletal growth and has the capacity to mediate growth plate fusion in female mice. J Bone Miner Res 19:72–77

    Article  CAS  PubMed  Google Scholar 

  38. Ke HZ (2005) In vivo characterization of skeletal phenotype of genetically modified mice. J Bone Miner Metab 23:84–89

    Article  CAS  PubMed  Google Scholar 

  39. Saxon LK, Turner CH (2005) Estrogen receptor β: the antimechanostat? Bone 36:185–192

    Article  CAS  PubMed  Google Scholar 

  40. Hatano H, Siegel H, Yamagiwa H, Bronk J, Turner R, Bolander M, Sarkar G (2004) Identification of estrogen-regulated genes during fracture healing, using DNA microarray. J Bone Miner Metab 22:224–235

    Article  CAS  PubMed  Google Scholar 

  41. Rodríguez J, Astudillo P, Ríos S, Pino A (2008) Involvement of adipogenic potential of human bone marrow mesenchymal stem cells (MSCs) in osteoporosis. Curr Stem Cell Res Ther 3:208–218

    Article  PubMed  Google Scholar 

  42. Yeung DKW, Griffith JF, Antonio GE, Lee FKH, Woo J, Leung PC (2005) Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging 22:279–285

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from the Fundação para a Ciência e Tecnologia (FCT), project PTDC/DES/103047/2008, is greatly acknowledged.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Gomes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Surgical craniotomy and graft implantation. a Exposure of the calvarial bone; b establishment of the standardized bicortical critical size calvarial defect; c graft implantation; d closure of the surgical wound (JPEG 101 kb)

High resolution image (TIFF 1682 kb)

ESM 2

Characterization of the osteoporotic conditions (n = 10). a Weight of Sham and Ovx animals throughout the healing period following craniotomy; b weight of the uteri from Sham and Ovx animals throughout the healing period following craniotomy; c representative 3D renderings of 6-month Sham animals, showing the analyzed volume of interest in the proximal tibia. Scale bar represents 1 mm; d representative 3D renderings of 6-month Ovx animals, showing the analyzed volume of interest in the proximal tibia. Scale bar represents 1 mm; e microstructural parameters of the trabecular structure of the proximal tibia in Sham and Ovx animals at the 6-month time point. Asterisk—significantly different from the Sham group (JPEG 84 kb)

High resolution image (TIFF 415 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durão, S.F., Gomes, P.S., Colaço, B.J. et al. The biomaterial-mediated healing of critical size bone defects in the ovariectomized rat. Osteoporos Int 25, 1535–1545 (2014). https://doi.org/10.1007/s00198-014-2656-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2656-y

Keywords

Navigation